Nrf2 activators provide neuroprotection against 6-hydroxydopamine toxicity in rat organotypic nigrostriatal cocultures.
نویسندگان
چکیده
Oxidative stress and inflammation appear to play a critical role in the progression of Parkinson's disease. As a result, there has been growing interest in antioxidant pathways and how these pathways might be exploited to slow the progressive loss of dopamine neurons. One such pathway that has garnered attention recently is mediated by the transcription factor Nrf2 and is integral in orchestrating cells' antiinflammatory defense. Nrf2 controls the inducible expression of numerous antioxidant and phase 2 detoxification genes, such as glutathione S-transferase, heme oxygenase-1, and NAD(P)H:quinone oxidoreductase 1 (NQO1). Once activated, these genes work synergistically to maintain intracellular redox homeostasis. In this study, we test the hypothesis that Nrf2 activation can protect dopaminergic neurons against 6-hydroxydopamine (6-OHDA)-induced toxicity. Treatment of organotypic nigrostriatal cocultures with either tert-butylhydroquinone (tBHQ) or sulforaphane, known activators of Nrf2, mitigated dopaminergic cell loss. The observed protection appeared to be mediated, at least in part, by an increase in antioxidant activity. Simultaneous treatment of cultures with tBHQ and 6-OHDA increased NQO1 expression 17-fold compared with controls. Overall, these results suggest that Nrf2 may play an important role in cellular protection in neurodegenerative diseases and may be a viable therapeutic target in the future.
منابع مشابه
Selective activation of group III metabotropic glutamate receptors by L-(+)-2-amino-4-phosphonobutryic acid protects the nigrostriatal system against 6-hydroxydopamine toxicity in vivo.
Evidence from several studies suggests that the progressive degeneration of dopaminergic (DA) neurones of the substantia nigra pars compacta (SNc) in Parkinson's disease (PD) may in part be due to excessive release of glutamate from subthalamic projections onto nigral DA neurones. Previous in vitro studies have demonstrated that selective activation of Group III metabotropic glutamate receptors...
متن کاملP90RSK and Nrf2 Activation via MEK1/2-ERK1/2 Pathways Mediated by Notoginsenoside R2 to Prevent 6-Hydroxydopamine-Induced Apoptotic Death in SH-SY5Y Cells
6-Hydroxydopamine (6-OHDA) is known to contribute to neuronal death in Parkinson's disease. In this study, we found that the preincubation of SH-SY5Y cells for 24 h with 20 μ M notoginsenoside R2 (NGR2), which is a newly isolated notoginsenoside from Panax notoginseng, showed neuroprotective effects against 6-OHDA-induced oxidative stress and apoptosis. NGR2 incubation successively resulted in...
متن کاملNeuroprotective Effect of Thymoquinone, the Nigella Sativa Bioactive Compound, in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat Model
Parkinson disease (PD) is the most common movement disorder with progressive degeneration of midbrain dopaminergic neurons for which current treatments afford symptomatic relief with no-prevention of disease progression. Due to the neuroprotective property of the Nigella sativa bioactive compound thymoquinone (TQ), this study was undertaken to evaluate whether TQ could improve behavioral and ce...
متن کامل[Dopaminergic neuroprotection via Nrf2-ARE pathway activation: identification of an activator from green perilla leaves].
Parkinson disease is one of the most common neurodegenerative disorders and is characterized by the selective loss of dopaminergic neurons in the substantia nigra. Although a decrease in proteasome activity has been found in patients with sporadic Parkinson disease, the relationship between the ubiquitin-proteasome system and dopaminergic neuronal death remains to be elucidated. Here, we review...
متن کاملNeuroprotection and restoration of the nigrostriatal dopaminergic system in 6-OHDA lesioned rat model of Parkinson's disease: Role of GDNF and TGF expressing Zuckerkandl's organ
Zuckerkandl’s organ (ZK) is an extra adrenal para-ganglion and has the ability to express glial cell line derived neurotrophic factor (GDNF) and transforming growth factor (TGF). It is also a source of dopamine and norepinephrine. In the present study, the neuroprotective and restorative potential of ZK was studied by transplanting it into the striatum of adult rats either before or after the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience research
دوره 87 7 شماره
صفحات -
تاریخ انتشار 2009